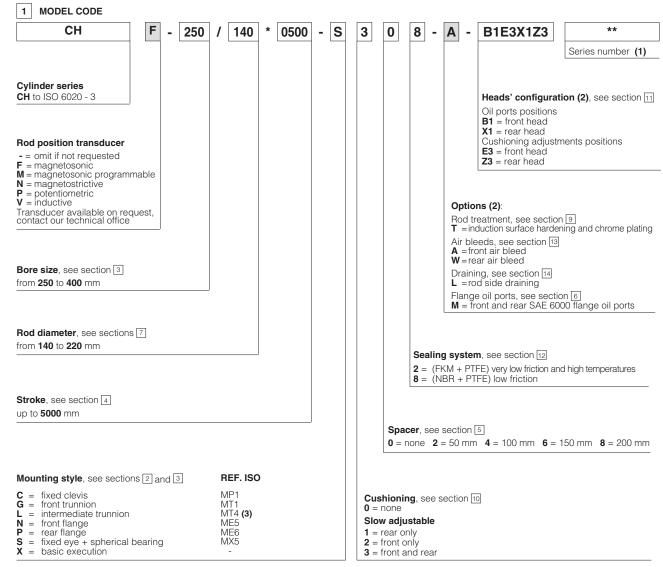



# Hydraulic cylinders type CH - big bore sizes

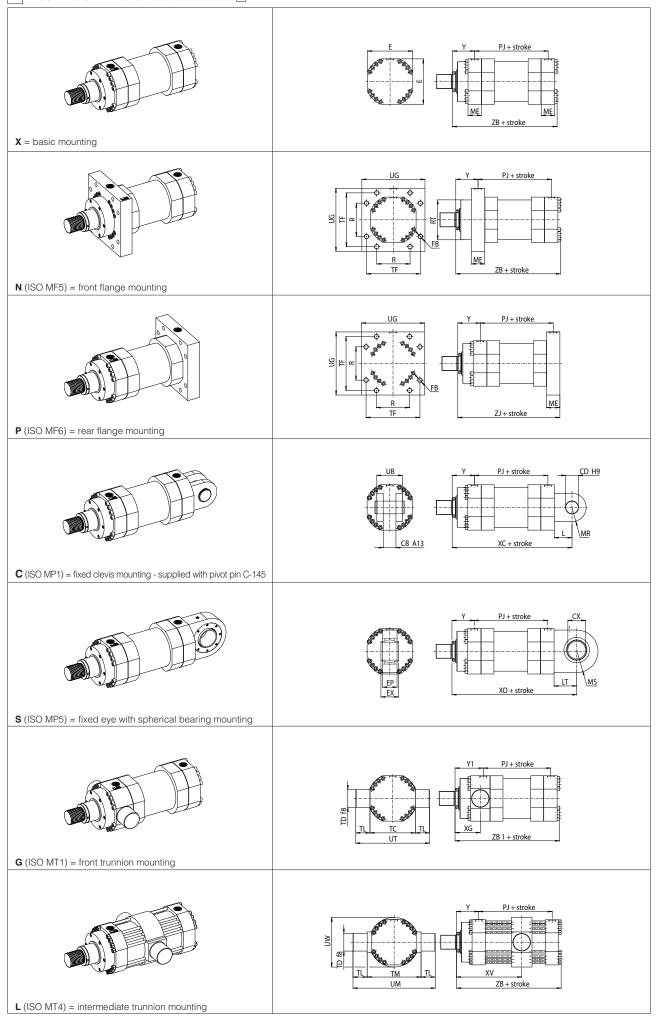
to ISO 6020-3 - nominal pressure 16 MPa (160 bar) - max 25 MPa (250 bar)



#### **SWC Cylinders Designer**


Software for assisted selection of Atos cylinders & servocylinders codes, including cylinder's sizing, full technical information, 2D & 3D drawings in several CAD formats.

Available for download at www.atos.com

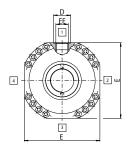

CH big bore cylinders have engineered double acting construction, designed to suit the requirements of industrial applications: top reliability, high performances and long working life.

- Bore sizes from 250 to 400 mm
- Strokes up to 5000 mm
- 7 standard mounting styles
- 2 seals options
- 3 piston guides for overload
- Adjustable cushioning
- Optional built-in position transducer, see tab. B310
- Attachments for rods and mounting styles, see tab. B500

For cylinder's choice and sizing criteria see tab. B015



- (1) For spare parts request indicate the series number printed on the nameplate only for series < 20
- (2) To be entered in alphabetical order
- (3) XV dimension must be indicated in the model code, see section 3




#### 3 INSTALLATION DIMENSIONS [mm] - see figures in section 2

|             |                           |            | _          |            |
|-------------|---------------------------|------------|------------|------------|
| ø           | Bore                      | 250        | 320        | 400        |
| Ø           | Rod                       | 140        | 180        | 220        |
| <b>B</b> f9 | (4)                       | 163        | 205        | 245        |
| СВ          | A13                       | 90         | 110        | 140        |
| CD          | -l9                       | 90         | 110        | 140        |
| CX          | H7                        | 125        | 160        | 200        |
| D (1)       | 1                         | 58         | 58         | 69         |
| E (2)       | max                       | 320        | 400        | 500        |
| EE (        | 1)                        | G 1 1/2    | G 1 1/2    | G 2        |
| EP          |                           | 102        | 130        | 162        |
| EX          |                           | 125        | 160        | 200        |
| <b>F</b> ma | ıx <b>(4)</b>             | 75         | 75         | 75         |
| FB          | (-)                       | 30         | 36         | 45         |
| L m         | in                        | 125        | 152        | 195        |
| LT          |                           | 160        | 200        | 250        |
|             |                           |            |            |            |
| ME          |                           | 94         | 114        | 140        |
| MR          |                           | 100        | 120        | 160        |
| MS          |                           | 160        | 200        | 250        |
|             | <b>3)</b> [Nm]            | 350        | 680        | 1060       |
| PJ ±        | 1,5 <b>(6)</b>            | 218        | 252        | 320        |
| <b>R</b> js |                           | 235        | 283        | 340        |
| RD f        | 8 (4)                     | 280        | 325        | 380        |
| тс          | h14                       | 320        | 400        | 500        |
| <b>TD</b> f | 8                         | 125        | 160        | 200        |
| TF          |                           | 380        | 472        | 588        |
| TL js       | s13                       | 100        | 125        | 160        |
| TM I        | n14                       | 380        | 485        | 605        |
| UB          |                           | 180        | 220        | 280        |
| UG          | nax                       | 445        | 549        | 683        |
| UM          | ref                       | 580        | 735        | 925        |
| <b>UT</b> r | ef                        | 520        | 650        | 820        |
| uw          | max                       | 480        | 600        | 750        |
| VD (        | 4)                        | 8          | 8          | 8          |
| VE n        | nax <b>(4)</b>            | 83         | 83         | 83         |
| WF          | ±2                        | 110        | 110        | 110        |
| XC :        | ±1,5 <b>(6)</b>           | 545        | 627        | 775        |
| XG :        | ±2 <b>(6)</b>             | 178        | 195        | 215        |
| хо          | ±1,5 <b>(6)</b>           | 580        | 675        | 830        |
| N :         | style L<br>minimun stroke | 20         | 35         | 26         |
| (V (5)      | min                       | 275        | 312        | 358        |
| 2 (6)       | max                       | 255+stroke | 273+stroke | 332+stroke |
| <b>Y</b> ±2 | (6)                       | 157        | 167        | 180        |
| Y1 ±        | 2 (6)                     | 199        | 223        | 260        |
| ZB          | nax <b>(6)</b>            | 460        | 520        | 625        |
| ZB1         | max <b>(6)</b>            | 505        | 580        | 685        |
| ZJ ±        | 1 (6)                     | 420        | 475        | 580        |

#### NOTES TO TABLE 3

(1) **D, EE** - Oil ports and drain are threaded according to GAS standard with counterbore dimension **D** according to ISO 1179-1 (see figure below)



- (2) E If not otherwise specified in the figures in section 2, this value is the front and rear round heads dimension for all the mounting styles (see figure above)
- (3) MT Screws tightening torque. Mounting screws must be to a minimum strength of ISO 898/2 grade 12.9
- (4) See figures in section [7]
- (5) XV For cylinders with mounting style L the stroke must always exceed the minimum values reported in the table. The requested XV value must be included between XV min and XV max and it must be always indicated, with dimension in millimeters, together with the cylinder code. See the following example:

CH - 250 / 140 \* 0500 - L308 - A - B1E3X1Z3 **XV = 300** 

(6) The tolerance is valid for strokes up to 1250 mm, for longer strokes the upper tolerance is given by the max stroke tolerance in section [4]

#### 4 STROKE SELECTION

Stroke has to be selected a few mm longer than the working stroke, to prevent to use the cylinder heads as mechanical stroke-end. The table below shows the minimum stroke depending to the bore.

#### Minimum stroke [mm]

| Ø Bore         | 250 | 320 | 400 |  |
|----------------|-----|-----|-----|--|
| Minimum stroke | 65  | 70  | 40  |  |

Maximum stroke:

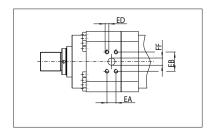

• 5000 mm

Stroke tolerances:

- 0 +2 mm for strokes up to 1250 mm
  0 +5 mm for strokes from 1250 to 3150 mm
- 0 +5 mm for strokes from 1250 to 3150 mr0 +8 mm for strokes over 3150 mm

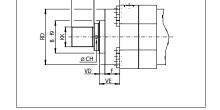
## 5 SPACER

For strokes longer than 1000 mm, proper spacers have to be introduced in the cylinder's construction to increase the rod and piston guide and to protect them from overloads and premature wear. Spacers can be omitted for cylinders working in traction mode. The introduction of spacers increases the overall cylinder's dimensions: spacers' lenght has to be added to all stroke dependent dimensions in section 3.




## RECOMMENDED SPACERS [mm]

| Stroke         | 1001<br>÷<br>1500 | 1501<br>÷<br>2000 | 2001<br>÷<br>2500 | 2501<br>÷<br>5000 |
|----------------|-------------------|-------------------|-------------------|-------------------|
| Spacer<br>code | 2                 | 4                 | 6                 | 8                 |
| Length         | 50                | 100               | 150               | 200               |


## 6 SAE 6000 FLANGE OIL PORTS - DIMENSIONS TO ISO 6162-2 [mm]

| Ø Bore | DN | <b>EA</b><br>±0,25 | <b>EB</b><br>±0,25 | <b>ED</b><br>6g | <b>FF</b><br>0 / -1,5 |
|--------|----|--------------------|--------------------|-----------------|-----------------------|
| 250    | 38 | 36,5               | 79,3               | M16             | 38                    |
| 320    | 30 | 30,3               | 19,5               | WIO             | 30                    |
| 400    | 51 | 44,5               | 96,8               | M20             | 51                    |



#### 7 ROD END DIMENSIONS [mm]

| Ø Bore | 250    | 320    | 400    |
|--------|--------|--------|--------|
| Ø Rod  | 140    | 180    | 220    |
| A      | 112    | 125    | 160    |
| CH (*) | 15     | 15     | 15     |
| кк     | M100x3 | M125x4 | M160x4 |

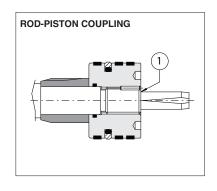


(\*) n°2 holes per key

Note: for B, F, RD, VD, VE and WF dimensions see section 3

#### 8 CYLINDER'S HOUSING FEATURES

The cylinder's housings are made in "hot rolled steel"; the internal surfaces are lapped: diameter tolerance H8, roughness Ra  $\leq$  0,25  $\mu$ m.

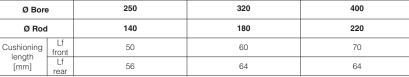

## 9 RODS FEATURES and options

The rods materials have high strength, which provide safety coefficients higher than 4 in static stress conditions, at maximum working pressure. The rod surface is chrome plated: diameter tolerances f7; roughness Ra  $\leq$  0,25  $\mu m$ . Corrosion resistance of 200h in neutral spray to ISO 9227 NSS.

| a Dad   | Material     | Rs min  | Chrome             |               |  |
|---------|--------------|---------|--------------------|---------------|--|
| ø Rod   | Material     | [N/mm²] | min thickness [mm] | hardness [HV] |  |
| 140     | alloy-steel  | 450     | 0,020              | 850-1150      |  |
| 180±220 | carbon steel | 360     | 0.045              | 630-1130      |  |

The rod and piston are mechanically coupled by a threaded connection in which the thread on the rod is at least equal to the external thread KK, indicated in the table  $\boxed{2}$ . See **tab. B015** for the calculation of the expected rod fatigue life. The piston is screwed to the rod by a prefixed tightening torque in order to improve the fatigue resistance. The stop pin 1 avoids the piston unscrewing. **Contact our technical office** in case of heavy duty applications.

Rod hardness can be improved selecting the option T: T = Induction surface hardening and chrome plating (only for rod 140)  $\cdot$  56-60 HRC (613-697 HV) hardness

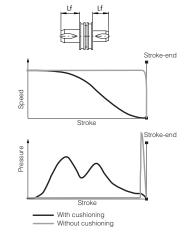



#### 10 CUSHIONING

Cushioning are recommended for applications where: • the piston makes a full stroke with speed over than 0,05 m/s; • it is necessary to reduce undesirable noise and mechanical shocks; • vertical application with heavy loads. The stroke-end cushioning are hydraulic dampers specifically designed to dissipate the energy of the mass connected to the cylinder rod, by progressively increasing the pressure in the cushioning chamber and thus reducing the rod speed before the cylinder's mechanical stroke-end (see the graphics at side). The cylinder is provided with needle valve to optimize cushioning performances in different applications. The regulating screws are supplied fully screwed in (max cushioning effect). In case of high masses and/or very high operating speeds it is recommended to back them off to optimize the cushioning effect. The adjustment screw has a special design to prevent unlocking and expulsion. The cushioning effect is highly ensured even in case of variation of the fluid viscosity.

| Ø Bore                 | •           | 250 | 320 | 400 |
|------------------------|-------------|-----|-----|-----|
| Ø Rod                  | I           | 140 | 180 | 220 |
| Cushioning length [mm] | Lf<br>front | 50  | 60  | 70  |
| [mm]                   | Lf<br>rear  | 56  | 64  | 64  |

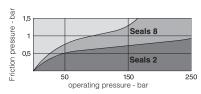
Lf is the total cushioning lenght. When the stroke-end cushioning are used as safety devices, to mechanically preserve the cylinder and the system, it is advisable to select the cylinder's stroke longer than the operating one by an amount equal to the cushioning lenght Lf; in this way the cushioning effect does not influence the movement during the operating stroke during the operating stroke.








FRONT HEAD: B1 = oil port position; E3 = cushioning adjustment position REAR HEAD: X1 = oil port position; Z3 = cushioning adjustment position. The oil ports and cushioning adjustment positions are only available, respectively, on sides 1 and 3 (see the figure at side).


Example of model code: CH-250/140 \*0100-S301 - A - B1E3X1Z3



#### 12 SEALING SYSTEM FEATURES

The sealing system must be choosen according to the working conditions of the system: speed, operating frequencies, fluid type and temperature. Additional verifications about minimum in/out rod speed is warmly suggested, see tab. B015.

Special sealing system for low temperatures, high frequencies (up to 20 Hz), long working life and heavy duty are available, see tab. TB020. All the seals, static and dynamic, must be periodically replaced: proper spare kits are available, see section 18. Contact our technical office for the compatibility with other fluids not mentioned below and specify type and composition. See section 16 for fluid requirements. fluid requirements.



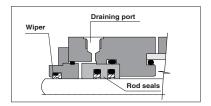
| Sealing | iviateriai | Features                                   | Max<br>speed | Fluid temperature | Fluids compatibility                                                                                                  | ISO Standar |            |
|---------|------------|--------------------------------------------|--------------|-------------------|-----------------------------------------------------------------------------------------------------------------------|-------------|------------|
| system  |            |                                            | [m/s]        | range             |                                                                                                                       | Piston      | Rod        |
| 2       | FKM + PTFE | very low friction<br>and high temperatures | 4            | -20°C to 120°C    | Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFB, HFC (water max 45%), HFD-U,HFD-R | ISO 7425/1  | ISO 7425/2 |
| 8       | PTFE + NBR | low friction                               | 1            | -20°C to 85°C     | Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606 fire resistance fluids HFA, HFC (water max 45%), HFD-U            | ISO 7425/1  | ISO 7425/2 |

#### 13 AIR BLEEDS

CODES: **A** = front air bleed; **W** = rear air bleed

The air in the hydraulic circuit must be removed to avoid noise, vibrations and irregular cylinder's

motion: air bleed valves are recommended to realize this operation easily and safely. Air bleeds are positioned on side 3, see section [1]. For a proper use of the air-bleed (see figure on side) unlock the grub screw ① with a wrench for hexagonal head screws, bleed-off the air and retighten as indicated in table at side.


## Ø Bore Screwing Tightening torque M8 x 10 20 Nm M12 x 20 30 Nm 320 - 400

## 14 DRAINING

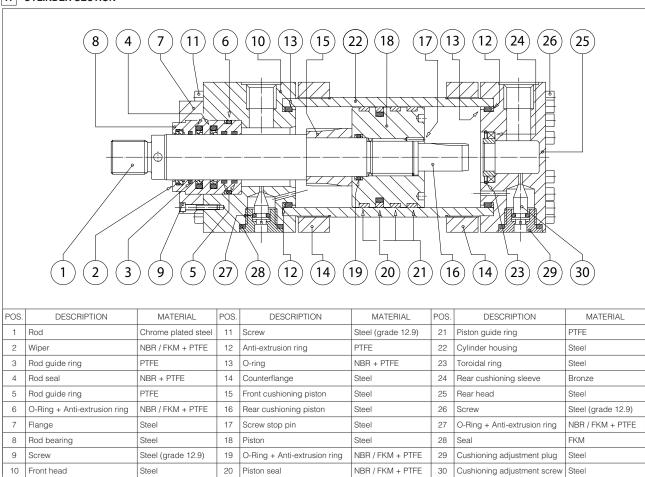
CODE: **L** = rod side draining

The rod side draining reduces the seals friction and increases their reliability; it is mandatory for cylinders with strokes longer than 2000 mm, with rod side chamber constantly pressurized and for servocylinders.

The draining is positioned on the same side of the oil port, between the wiper and the rod seals (see figure at side). It is recommended to connect the draining port to the tank without backpressure. Draining port is G1/8.



#### 15 FLUID REQUIREMENTS


Cylinders and servocylinders are suitable for operation with mineral oils with or without additives (HH, HLP, HLP-D, HM, HV), fire resistant fluids (HFA oil in water emulsion, 90-95% water and 5-10% oil; HFB water in oil emulsion, 40% water; HFC water glycol, max 45% water) and synthetic fluids (HFD-U organic esters, HFD-R phosphate esters). The fluid must have a viscosity within 15 and 100 mm²/s, a temperature within 0 and 70°C and fluid contamination class ISO 20/18/15 according to ISO 4406 NAS1638 class 9, see also filter section at www.atos.com or KTF catalog.

## 16 CYLINDERS MASSES [kg] (tolerance ± 5%)

|                |               |                  | e rod                  |             |                   |                   | DITIONAL MASS<br>mounting styles |                  |                    |                      |
|----------------|---------------|------------------|------------------------|-------------|-------------------|-------------------|----------------------------------|------------------|--------------------|----------------------|
| Ø Bore<br>[mm] | Ø Rod<br>[mm] | Stroke<br>100 mm | Each<br>100 mm<br>more | Styles C, S | Style<br><b>G</b> | Style<br><b>L</b> | Styles N, P                      | Front cushioning | Rear<br>cushioning | Each 50 mm<br>spacer |
| 250            | 140           | 324              | 27                     | 55          | 9                 | 110               | 83                               | 8,5              | 19                 | 28                   |
| 320            | 180           | 485              | 41                     | 82          | 16                | 160               | 142                              | 11               | 27                 | 44                   |
| 400            | 220           | 902              | 71                     | 155         | 34                | 360               | 275                              | 17               | 45                 | 72,4                 |

Note: the masses related to the other options, not indicated in the table, don't have a relevant influence on the cylinder's mass

#### 17 CYLINDER SECTION



## 18 SPARE PARTS - SEE TABLE SP-B160

Example for seals spare parts code

|                 | G | 8 | <b>-</b> | СН | - | 250 | 1 | 140              |
|-----------------|---|---|----------|----|---|-----|---|------------------|
| Sealing system  |   |   |          |    |   |     |   |                  |
| Cylinder series |   |   |          |    |   |     |   |                  |
| Bore size [mm]  |   |   |          |    |   |     |   | Rod diameter [mr |